SYNTHESIS OF TRISUBSTITUTED ETHYLENES OF THE FURAN SERIES BASED ON 5-METHOXYCARBONYL-2-FURFURYL TRICHLOROMETHYL SULFONE*

Adolf JURÁŠEK, Jaroslav Kováč and Rudolf BELKO

Department of Organic Chemistry, Slovak Institute of Technology, 880 37 Bratislava

Received March 22nd, 1979

Condensation of 5-methoxycarbonyl-2-furfuryl trichloromethyl sulfone with 4-X-benzaldehydes (X = H, OH, OCH₃, N(CH₃)₂, Cl, I, CN) or 5-Y-2-furaldehydes (Y = H, NO₂) in acetic acid in the presence of ammonium acetate and piperidine afforded the corresponding 1-(5-methoxy-carbonyl-2-furyl)-1-trichloromethylsulfonyl-2-arylethylenes (*IIa-IIj*). Structure of these new compounds is discussed on the basis of their UV, ¹H-NMR and IR spectra.

In our previous studies we described the synthesis of several 5-nitrofurfuryl sulfones¹⁻⁶ of the general formula $5-NO_2C_4H_2OCH_2SO_2R$, where $R = C_6H_5$, CH₃, CHCl₂ or CCl₃. These compounds are relatively strong C-acids which enable a direct synthesis of trisubstituted ethylenes by condensation with aromatic² and heterocyclic³⁻⁶ aldehydes. 5-Nitrofurfuryl sulfones, containing the strongly electronaccepting CCl₃ group bonded to the sulfonyl group, react also with Aliphatic aldehydes to give the corresponding cyclopropane derivatives of the 5-nitrofuran series^{7,8}.

Our present study shows that α_{β} -unsaturated sulfones (trisubstituted ethylenes of the furan series) can be synthesized also using other 5-substituted furfuryl derivatives, which, however, must contain a strongly electron-accepting group bonded to the sulfone moiety.

The derivatives IIa - IIj were synthesized according to Scheme 1. The starting sulfone was prepared in 45% yield from 5-methoxycarbonyl-2-furfuryl bromide⁹ by reaction with sodium trichloromethylsulfinate¹⁰ in sulfolane. When chloride was used instead of the starting bromide, the yield of the sulfone did not exceed 5%. The unsaturated sulfones II were obtained by condensation of the sulfone I with aldehydes in acetic acid, using piperidine and ammonium acetate as catalyst (except the case of IIj, whose preparation was accompanied by formation of tars) in 27 - 37%yields. These yields were substantially lower than those achieved in condensation of 5-nitro-2-furfuryl trichloromethyl sulfone with the same aldehydes⁶. On the other

Part CXLIV in the series Furan Derivatives; Part CXLIII: This Journal 45, 423 (1980).

hand, it was shown experimentally that a $COOCH_3$ group in the position 5 of the furan nucleus and a trichloromethyl group bonded to the SO_2 group additionally enhance the acidity of the methylene hydrogens. If the trichloromethyl group is replaced by a phenyl group, the corresponding 5-methoxycarbonyl-2-furfurylphenyl sulfone does not undergo the condensation reaction with aromatic aldehydes. The data on the synthesized compounds are given in Table I and II.

In order to find out whether the condensation affords only one stereoisomer

Compound Y X	M.p., °C (yield, %)	Formula	Calculated/Found		
		(mol.w.)	% S	% Cl	% N
lla H	$\begin{array}{ccc} 133-135 & C_{15}H_{11}Cl_{3}O_{5}S\\ (28) & (409\cdot7) \end{array}$		7·83 7·69	25·96 25·48	_
<i>IIb</i>	188—190	C ₁₅ H ₁₀ Cl ₃ NO ₇ S	7∙05	23·39	3∙08
NO ₂	(37)	(454·7)	7∙03	23·50	3∙34
<i>llc</i>	164—169	C ₁₆ H ₁₀ Cl ₃ NO ₅ S	7∙38	24·47	3·22
CN	(35)	(434·7)	7∙29	24·58	3·28
IId	147—149	C ₁₅ H ₁₀ Cl ₃ IO ₅ S	a	a	_
I	(32)	(535·6)	a	a	
IIe	134—139	$C_{15}H_{10}Cl_4O_5S$	7·22	31·94	
Cl	(27)	(444.0)	7·08	31·69	
<i>IIf</i>	199—202	$C_{15}H_{11}Cl_{3}O_{6}S$	7∙53	24·99	_
OH	(28)	(425.7)	7∙40	24·82	
llg	135—137	C ₁₆ H ₁₃ Cl ₃ O ₆ S	7·29	24·19	
осн _з	(27)	(439·7)	7·17	24·14	
<i>IIh</i>	171—174	C ₁₇ H ₁₆ Cl ₃ NO ₅ S	7∙08	23·49	3∙09
N(CH ₃) ₂	(28)	(452·7)	7∙03	23·36	3∙39
Ili	134—138	C ₁₃ H ₉ Cl ₃ O ₆ S	8·02	26·61	
H	(31)	(399·7)	7·74	26·53	
IIj	184—185	C ₁₃ H ₈ Cl ₃ NO ₈ S	7·21	23·92	3·14
NO ₂	(35)	(444·6)	7·12	23·84	3·31

TABLE I Properties of the Trisubstituted Ethylenes IIa-IIj

^a For this compound the percentage of carbon and hydrogen was determined; calculated: 33.64% C, 1.88% H; found: 32.56% C, 1.83% H.

or a mixture of both isomers, we measured the ¹H-NMR spectra of crude reaction mixtures. Analysis of the spectral data revealed that only one, non-planar, isomer was formed to which we assigned the *E* configuration. This configurational assignment was based on comparison of UV spectra of the synthesized compounds with that of 1-(5-nitro-2-furyl)-1-trichloromethyl-2-(5-bromo-2-furyl)ethylene. According to_iX-ray examination¹¹, this model compound has *E*-configuration and the 5-nitrofuran nucleus deviates by approximately 57° from the double bond plane. The last UV band of this compound is located at 367 nm (log ε 4·06)⁶. The stereochemical reaction

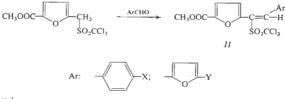

Com- pound			λ _{max} , nm log ε			^γ (CO)	δ _(C=C-H)
x							
Y							
IIa H	203 (4·45)	226 (4·16)	265 (4·47)	i 291 (4·17)	sh 326 (4·17)	1 728	8.18
<i>IIb</i> NO ₂	203 (4·38)	—	i 269 (4·14)	—	345 (3·92)	1 730	8.19
IIc CN	202 (4·22)		261 (4·43)	i 283 (4·14)	345 (3·92)	1 732	8-16
IId J	203 (4·37)	240 (4·29)	264 (4·32)		327 (4·26)	1 720	8.08
IIe Cl	203 (4·36)	232 (4·20)	267 (4·43)	299 (4·23)	sh 333 (4·13)	1 730	8.12
<i>IIf</i> OH	201 (4·18)	249 (4·21)	—	278 (4·22)	353 (4·30)	1 729	8.08
IIg OCH ₃	204 (4·17)	242 (4·23)	-	275 (4·27)	345 (4·35)	1 730	8.10
IIh N(CH ₃) ₂	202 (4·11)	254 (4·11)	_	299 (3·86)	419 (4·40)	1 730	8.01
Ili H	-	-	277 (4·32)		351 (4·22)	1 728	7.92
IIj NO2	202 (4·01)	sh 250 (4·33)		312 (4·15)	384 (4·02)	1 729	7.93

 TABLE II

 Spectral Data for the Trisubstituted Ethylenes IIa—IIi

748

course is thus similar to the situation found for analogous ethylenes of the 5-nitrofurane series²⁻⁶.

Scheme 1

The UV spectra of most of the synthesized compounds exhibit four absorption bands in the regions 201-204 nm, 226-254 nm, 260-299 nm and 326-353 nm. The first three bands can be ascribed to the $\pi \rightarrow \pi^*$ or $n \rightarrow \pi^*$ transitions in the aromatic or furan part of the molecule, conjugated with the ester group. The last absorption band which exhibits a significant hypsochromic shift compared with the planar standard² (395 nm; $\log \varepsilon 4.69$), proves non-planarity and E-configuration of these systems. All the compounds are light-yellow solids except the derivative IIh, containing the $N(CH_3)_2$ group, which is orange-coloured and exhibits the last absorption band at 419 nm. This indicates that this compound has a quinoid structure, similarly to the analogous dimethylamino derivatives of the 5-nitrofuran series⁶. The IR spectra display, in addition to bands due to the furan nucleus, characteristic bands due to $v(SO_2)_{s}$ and $v(SO_2)_{as}$ in the region $1150 - 1160 \text{ cm}^{-1}$ and $1350 - 1375 \text{ cm}^{-1}$, respectively, the latter band being more affected by the nature of substituent. All the compounds exhibit also very strong bands at 1728-1732 cm⁻¹, corresponding to v(CO) of the ester group. In accord with the UV spectra, their practically constant position proves that the 5-methoxycarbonyl-2-furan moiety deviates from the double bond plane. The chemical shift of the ethylenic proton is 7.90-8.12 ppm and does not correlate with σ -Hammett substituent constants.

In our previous studies we have found that addition of diazomethane to 5-nitrofurane analogues of the compounds described in this paper depends on the character of the SO₂R group, leading either to pyrazolines¹² ($R = SO_2C_6H_5$) or directly to cyclopropanes¹³ ($R = SO_2CCI_3$). Therefore, we carried out this reaction also with 1-(5-methoxycarbonyl-2-furyl)-1-trichloromethylsulfonyl-2-phenylethylene (*IIa*). Unlike its nitrofurane analogue, this compound afforded 1-pyrazoline, containing traces of 2-pyrazoline, as shown by ¹H-NMR and IR spectra. Thus, replacement of a nitro group on the furan nucleus by a methoxycarbonyl group favours the formation of pyrazoline instead of cyclopropane ring. In this case, a synchronous 1,3-cycloaddition of CH_2N_2 takes place because the ethylenic bond is less polar than in the 5-nitrofuran analogues to which the addition proceeds by a stepwise mechanism to give cyclopropane ring¹³.

EXPERIMENTAL

5-Methoxycarbonyl-2-furfuryl Trichloromethyl Sulfone (1)

A mixture of 5-methoxycarbonyl-2-furfuryl bromide (4·4 g; 0·02 mol), sodium trichloromethylsulfnate (5 g; 0·025 mol) and sulfolane (50 ml) was heated under stirring for 18 h to 40–45°C, poured on crushed ice and stirred until the separated oil became thick. The product was filtered, washed with water and crystallized from methanol, m.p. $102-104^{\circ}$ C, yield 3 g (45%). For C₈H₇Cl₃O₅S (321·4) calculated: 9·42% S, 31·23% Cl; found: 9·92% S, 32·37% Cl.

Preparation of Compounds IIa-IIi

A stirred mixture of the sulfone I (3·2 g; 0·01 mol), the corresponding aldehyde (0·012 mol), acetic acid (50 ml), ammonium acetate (2 g) and piperidine (3-5 drops) was refluxed for 3 h. After pouring on ice the precipitate was filtered, washed with water and dried. The products were purified by chromatography on silica gel (3 × 50 cm column) in chloroform or by crystallisation from methanol (*IIb*, *IIi*) or ethyl acetate (*IIa*, *IIc*).

1-(5-Methoxycarbonyl-2-furyl)-1-trichloromethylsulfonyl-2-(5-nitro-2-furyl)ethylene (IIj)

A mixture of I (3·2 g; 0·01 mol), 5-nitro-2-furaldehyde (1·4 g; 0·01 mol), acetic acid (0·3 g), piperidine (2-3 drops) and benzene (30 ml) was refluxed for 4 h in a 100 ml flask equipped with an azeotropic separator. The benzene was removed *in vacuo* and the precipitate crystallized twice from methanol; yield 1·5 g (34%) of light-yellow crystals, m.p. 184--185°C.

Addition of Diazomethane to 1-(5-Methoxycarbonyl-2-furyl)--1-trichloromethylsulfonyl-2-phenylethylene (IIa)

An ethereal solution of diazomethane (threefold molar excess) was added at 5—10°C to a solution of *IIa* (1·2 g; 0·003 mol) in tetrahydrofuran (20 ml). After standing for 24 h, the separated 3-(5-methoxycarbonyl-2-furyl)-3-trichloromethylsulfonyl-4-phenyl- Λ^1 -pyrazoline was filtered and crystallized from acetone, m.p. 90—92° (decomposition). Yield 1·2 g (91%). For C₆H₁₃Cl₃N₂O₅S (451·7) calculated: 7·10% S, 23·55% Cl, 6·20% N; found: 7·15% S, 23·62% Cl, 6·25% N. IR spectrum, cm⁻¹: ν (CO) 1/30, ν (N=N) 1/52, ν (SO₂)_a 1/55, ν (SO₂)_a, 1/35, ν (CO–OC) 1025, ν (C–H)_{def} 985; UV spectrum λ_{max} nm (log e): 203 (4·28), 259 (3·98), 307 (3·87); ¹H-NMR spectrum (pm): δ (CH–CH₂) m 4·55—4·73, m 4·55—4·73, m 5·28—5·47, J_{CH}-CH₂ = 5 Hz.

Spectral Measurements

IR spectra were measured in chloroform on a UR-20 (Zeiss, Jena) spectrophotometer (0.66 mm NaCl cells, concentration 10^{-2} M or saturated solutions). The instrument was calibrated by a polystyrene foil. Electron absorption spectra were taken on a Specord UV VIS (Zeiss) spectrometer;

 $3.10^{-5}-7.10^{-5} M$ ethanolic solutions, accuracy ± 1 nm. 1H -NMR spectra were measured at 25°C on a Tesla BS 487 B (80 MHz) instrument in deuteriochloroform with tetramethylsilane as internal standard.

REFERENCES

- 1. Jurášek A., Kováč J., Krutošíková A., Hrdina M.: This Journal 37, 3144 (1972).
- 2. Jurášek A., Kováč J.: This Journal 38, 1705 (1973).
- .3. Jurášek A., Kováč J., Geisbacher D.: This Journal 39, 1220 (1974).
- 4. Jurášek A., Kováč J., Abrahám J.: Chem. Zvesti 29, 262 (1974).
- 5. Hrdina M., Jurášek A.: This Journal 41, 3391 (1976).
- 6. Geisbacher D., Jurášek A., Dandárová M., Kováč J.: This Journal 43, 1618 (1978).
- 7. Geisbacher D., Jurášek A., Kováč J.: This Journal 44, 1984 (1979).
- 8. Prousek J., Jurášek A., Dandárová M.: This Journal 44, 420 (1979).
- Mndzhoyan A. L., Afrikyan V. G.: Sintezy Geterocyklicheskikh Soedinenii I, p. 101. Izd. Akad. Nauk Arm. SSR, Yerevan 1953.
- 10. Šilhánek J., Zbirovský M.: This Journal 34, 878 (1969).
- 11. Kusá A., Polynová T. N., Poraj-Košic M. A., Jurášek A.: Zh. Strukt. Khim. 3, 559 (1979).
- 12. Jurášek A., Kováč M.: This Journal 41, 3371 (1976).
- 13. Prousek J., Jurášek A., Kováč J.: This Journal, in press.

Translated by M. Tichý.